
Jim Keller

DESIGN SYSTEMS FOR THE WEB
Eastern Standard’s Guide to

Eastern Standard’s Guide to

Jim Keller

design systems
for the web

Eastern Standard
1218 Chestnut St., 4th Floor
Philadelphia, PA 19107
easternstandard.com

© 2018
Author: Jim Keller

Contributors: Mark Gisi, Brian Huddleston
Editor: Lisa Picozzi
Design: Brian Huddleston

contents

introduction

PART 1

design approach for component systems

PART 2

deriving components: figuring out what you’ll need to design

PART 3

the end goals of your system + scaling into the future

 8–9

 10–21

 22–33

 34–41

Introduction8–9

About This Guide

THIS DOCUMENT REPRESENTS thoughts, experiences, and

best practice recommendations for systems-based, scalable

website design. We’ve spent several years refining our approach

to the design and implementation of content-rich websites,

transitioning away from “templates” and toward modular

components that can be combined, re-used, and evolved as

needs change. Especially among large institutions or enterprises,

single-use websites — e.g., for a particular department or service

line — leave clients in a perpetual state of needing a ground-

up redesign. When a site is designed using a series of rigid

templates, it represents an organizational “snapshot in time” that

is often at risk of being outdated by the time the site launches.

Without systems-based thinking behind the design and

implementation, the common solution is to wait until the next

redesign to meet the evolving needs of the organization.

Our clients include a national base of major universities, health

systems, and corporations, many of whom have dozens or even

hundreds of websites in their ecosystem. We have worked

closely with them on the design, implementation, and rollout of

web design systems and content management platforms that

introduce consistency and governance to their organizations,

while still allowing content flexibility and unique aesthetic

personality for various departments, schools, or service lines.

One of these clients recently asked us to give their internal

design team a presentation about the work that we’d done, and

the preparation for that presentation made it clear that we have

a lot to say on this topic.

We’ve organized our thoughts and experiences here in major

points and valuable takeaways to help you create modular

designs that translate into scalable content management tools.

Before We Begin

Before we get into specifics, it’s important to review some

reasons why we feel that there’s still more to say on the topic

Design Systems for the Web

atomicdesign.bradfrost.com1

of modular web design, given that it’s a common topic of

conversation that has been codified in approaches like Brad

Frost’s Atomic Design and Google’s Material Design.

Put simply, even among those who are familiar with atomic

design, we still see — and were ourselves subject to — mistakes

and missed opportunities in how the approach actually gets

implemented. A few of these missteps are discussed below.

Visual Consistency vs. Design Systems

Any self-respecting designer will tell you that they are consistent

in their design approach: that there’s a reason and a rationale

behind decisions, and that they stay close to the established brand

guidelines and UX best practices.

There is, however, an important distinction between maintaining

visual language (the kind of consistency we see most often)

and working within a thoughtfully constructed design system.

Our hope is that this document will help you understand that

distinction, and help you identify areas where you may not be

taking the idea of “consistency” far enough.

Atomic Design

Brad Frost’s Atomic Design1 is perhaps the most popular reference

point for modular design systems on the web. It discusses many

of the same concepts contained in this document, but we hope

to add a few helpful, practical layers to help you on your way to

executing a modular design system.

We’ve also chosen to abandon use of the atomic design

nomenclature (atoms, molecules, organisms, etc.) because

we’ve found that it doesn’t resonate with clients. We prefer to

use the terms “components,” “layouts,” and “page elements”

when educating clients and stakeholders, as you’ll see

throughout this guide.

design approach for
component systems

PART 1

Design Approach for Component Systems12–13

THIS SECTION IS INTENDED to highlight the distinction between

maintaining a consistent design language and building a truly

modular, component-based design. Understanding this difference

is crucial to collaboration between designers and developers.

Developers often find gaps in consistency when they attempt to

implement a set of design comps. In other words, a page element

that the designer considers to be “the same on both pages” is

interpreted and implemented by the developer as two completely

different elements. That kind of discrepancy happens throughout

implementation, and the problems it creates are felt all the way

through to the quality assurance process. You might start finding

that, for example, fixing the leading or padding on one page

doesn’t affect the “same” element on the other page; that other

page needs to be fixed separately. Why does this happen?

The answer ultimately has to do with how CSS rules are

applied. The developer is under the following constraints when

implementing page elements:

 – Everything must have a name. If it’s on the page and it has

style applied to it, the developer had to give it a name in

order to apply the styling.

 – Every single aspect of the styling needs to be spelled out to

the browser. From padding to line height, font size, color, etc.,

each element is individually addressed in the styling rules.

 – If anything within the page element changes from page to

page — no matter how minor — that name has to change in

some way. If you’ve got a “callout-block” on page one, and a

similar-but-not-exactly-the-same callout block on page two,

you just introduced “callout-block-alternate” or “callout-

block-1” and “callout-block-2.”

If you’ve been designing or building websites for a while, it

may seem that this misalignment on the topic of consistency

is just an unfortunate part of the process — that designers and

developers just see things differently. In reality, the problem

can be eliminated entirely by introducing the right process and

using the right language when talking about design.

Design Systems for the Web

Naming Conventions

Naming conventions are probably the most important aspect

of building a component-based design system. If you stop

reading this guide at the end of this paragraph, the one thing

you should take away is to assign every component in your

design a unique name. Not only will this introduce a common

language to your project, but it will immediately highlight when

your system is growing out of control. If you’ve got “call to

action style 1,” “call to action style 2,” “call to action style 2 with

big heading,” “apply now call to action,” and “donation call to

action,” your system is almost certainly getting away from you.

Think about how you can combine the use case into fewer total

components. Those components are probably doing almost the

same thing, so they can probably share a unified design.

The names for your components should actually be as abstract

as possible. In other words, don’t call the three top news stories

on the homepage “Homepage Featured News.” Each word in

that name traps your component to an incredibly specific use

case, which is exactly what you’re trying to steer clear of:

 – “Homepage” assumes that this component will always live in

only one place on the site.

 – “Featured” have you defined what “featured” actually

means? Are you later going to find that you have other

“featured” content that is designed differently, or content

that shares this design but isn’t classified as “featured?” In

other words, have you made the word “featured” completely

meaningless in your system?

 – “News” assumes that this component will only ever show

news. Can it also show events? Latest blog posts?

These types of naming considerations are why, in Google’s

Material Design, you’ll find component names like “cards,”

“chips,” and “snackbars.” The design for these components can

be applied to many difference use cases, so they are named as

abstractly as possible.

Design Approach for Component Systems14–15

Doing It Wrong: Context Over Function

Below is an example of designing by context, not by function

(FIG. 1–3). Note how we have three distinct components (with

their own font style, image placement, and sizing) that all serve

essentially the same purpose.

The below is an example of why your developer mutters to herself

and keeps a flask tucked in her coat. The calls to action below

share a common design language, but they are entirely different

in the eyes of a developer because they each will require their

own unique name and unique set of rules in the CSS code.

Callout with Image Background

Callout with Image

Duntium evendi blabo, ipsunt molupta cum faccus verias a

nem is iuscien issequia voluptatur maionsedis comnimil et

ex explaci picaesti blaboritis

Idel iundit dolupta tusandam qui

ni asim dolut fugia expedis milit ut

harum in nimpor sita sim

Duntium evendi blabo, ipsunt molupta cum faccus verias a nem is iuscien
issequia voluptatur maionsedis comnimil et ex explaci picaesti blaboritis

LEARN MORE

REQUEST A COPY

REGISTER

LOG IN

CALLOUT WITH COLOR BACKGROUND

FIG. 1

FIG. 2

FIG. 3

Design Systems for the Web

You can avoid this situation by asking yourself the following

three questions as you begin to design a component. I’ve also

noted answers that are applicable to the example above:

What is this thing, fundamentally?

It’s not the “market overview” call to action — that’s way too

specific and designed for a particular use case. Rather, this

component is “an eye-catching block with an image, title,

supporting text, and up to two links.”

What purpose does it serve?

It directs users to important content elsewhere on the site.

Is this same need likely to come up later?

Almost certainly.

If you consistently ask these questions as your design system

takes shape, you’ll start to notice something very convenient and

powerful: You’ll see that you’ve already designed components that

share the same answer to “what is this thing, fundamentally?”

In that instance, rather than designing something new, you can

re-use an existing component or create a slight variant of that

component (discussed in the next section) to suit the use case.

If you’ve got a truly one-off use case that only appears once

on the site, and there’s good reason for it to only appear once,

we refer to this as a “page element.” The name is used to

distinguish these one-offs from the set of reusable components

in the system.

1

2

3

Design Approach for Component Systems16–17

Introducing Variation

One of the most difficult aspects of component design is creating

visual interest and excitement while still maintaining rigorous

consistency. We don’t actually expect that you’ll use the exact same

teaser or call to action for everything on your site. However, any

newly introduced component should have a clear justification for

existing. If you’ve got a use case that could be satisfied by a minor

adjustment to an existing component, consider introducing a

variant to that component rather than creating an entirely new one.

The examples to the right (FIG. 4 –7) show several variations on

a call to action. Some have background images, some have

supporting text, some are double-wide. The reason these are

different from the previous “Doing It Wrong” example is that

each variation can inherit a majority of its styles from the base

call to action. In other words, the changes are additive; they don’t

take the same property (text size, padding, etc.) and alter it.

How do you know when something crosses the border from

“variation” to “new component?” It’s not always clear. If you’ve

answered the three questions from the previous section and

still aren’t sure, consider the following:

There’s no perfect rule for defining the boundaries between

variations and components, but the fact that you’re thinking

about it means that you’re probably doing OK!

Does the proposed variation potentially upset the original purpose the component was

designed for? As an example: Adding or removing the supporting text from our call to

action component doesn’t upset the original purpose; it still directs users to important

content elsewhere on the site.

Conversely, let’s say you wanted to use a similar design treatment for a component

that simply breaks up the page with an image, title, and text. It might look similar

to your call to action, so you might be tempted to call it “call to action without link.”

However, this is a scenario where you’d want to introduce a new component, as a call

to action without a link doesn’t satisfy the original purpose at all.

Design Systems for the Web

CTA Title Goes
Here

CTA Title Goes
Here

CTA Title Goes
Here Using
the Maximum
Character Count
of 70

CTA with Image
Title Goes Here

CTA with Image Title Goes Here

Offic te voluptas nonsequ modis
ditam quia dolendantur as
porest, quias eium rati culpa

Git quo con nobist, int et volorio
quodipsa volore, occullatiis nos
comnimus, asperum

Text Action 1 Text Action 2

FIG. 4

FIG. 5

FIG. 6

CTA Title Goes Here

Text Action 1 Text Action 2

Cepti quuntia parciis dolor re volor aut labor modiatur re et et fugitis eatiunt
asimolore samus et deliqui suscia aut omnihil modit quatum fugitia nditendis
enimusam suscidi omnis escidi to dolenim am landiti issento idis eariora
debitis volendi auda dus que vent.

FIG. 7

Design Approach for Component Systems18–19

Layouts: Putting It All Together

We make it a point to avoid calling our pages “templates” because

they’re not templated in the traditional sense. The components

can be arranged on the page in almost any order, giving the

content managers considerable flexibility without allowing poor

content decisions to upset the integrity of the design.

Here is one of the most critical things to remember in putting

together layouts: Your layouts should be built exclusively from

components in your system, with no exceptions.

If you come across a need or use case that isn’t supported,

don’t ever change one particular layout. Revisit your system and

add or update your components.

AVAILABLE CONTENT COMPONENTS

PAGE A PAGE B PAGE C

FIG. 8

Design Systems for the Web

Component Ordering

One of the biggest challenges you will face in building your layouts

is in maintaining the integrity of the design when the order of the

components changes (FIG. 8–9). Especially when your components

will be built into a content management system, you can’t assume

that Component A will always come before Component B on the

FIG. 9

Design Approach for Component Systems20–21

page. They all have to fit together regardless of order. This is

something that you’ll need to keep in mind as you combine your

components into layouts. Explore different component ordering,

and avoid the temptation to make adjustments to just one layout.

Also try to avoid creating rules that apply at the layout level (e.g.,

“this component must always come after that one”); it’s preferable

to revise the component to make it more flexible.

Maintaining an Aesthetic You Can Be Happy With

One of the most challenging aspects of component-based

design is that your mockups may come out feeling bland and

blocky. This is a trap that’s easy to fall into, and designers often

feel limited by systems-based design.

Try not to think of consistency and systems as limitations

being imposed on creativity. Instead, focus on embracing them.

Remember that working within constraints is nothing new,

since it’s rare that designers have the luxury of creating a visual

language entirely from scratch. The majority of web projects are

influenced by existing websites, branding from print collateral, or

identity guidelines. In the same way, you need to find clever ways

to work within those constraints, you’ll need to exercise creativity

to find solutions within a design system (even one you’ve

constructed yourself). As you craft your design system, always

keep in mind that you should be working from reasons, not rules.

The goal is not to sacrifice aesthetics or visual impact for the

sake of consistency; it’s to achieve a successful balance of both.

When in the beginning phases of constructing a systems-based

design, it’s critical that you order the steps in your design process

in a sensible way. Design pieces for the system in the order of

most used to least used. Establish the smallest, most common

pieces first, such as body text and buttons, then extend your

focus to the rest of the design. This approach allows you to see

as early as possible when a basic element needs to be modified

or altered to fit within the larger design system, and allows for

the minimum amount of rework as you move forward.

Design Systems for the Web

Avoid designing your components in isolation. Although they

are often presented this way in style guides, it’s easier to design

your components within the context of other components they’ll

frequently be paired with. As discussed previously, it’s also very

important to consider that these pieces will be rearranged in varied

order and in many different combinations. As you’re iterating

on each component, test them thoroughly by juxtaposing

them with others from the system. Just remember not to make

layout-exclusive decisions: If you’re going to change something

to suit a layout, change the underlying components themselves.

Often, the needs of a large design system are many: informational,

promotional, eye-catching, educational, etc. Each of these can

be achieved by varying the combination of components used

to represent that content. A good system can dial up or dial back

the expressiveness of a given page in order to support its purpose.

An information-heavy section could be made easier to absorb for

the user by breaking apart that page into clearly defined headers

and accordions, allowing the user to skim the information at a

glance and take in only what they need. Alternatively, a landing

page could use components featuring hero images and larger

typography to focus on setting a tone for the rest of the site.

A design system for the web is similar to the rhythm when turning

the pages of a book: Pieces are revealed gradually while browsing,

and each user is seeing these pieces for the first time in different

orders and combinations, depending upon where they enter into

the experience. Avoid worrying over the individual instances, and

instead focus on the system as a whole. Try to capitalize on this

rhythm where appropriate. Some components by nature can be

much more expressive, whereas others are meant to be more

informative, and can be treated as such. The system itself is only

as useful as its weakest piece, and each part should be measured

and assessed, not only against the other components, but against

the overall tone of the system itself. When working correctly, an

effective system will support itself. Instead of feeling isolated and

weak, the cumulative effect of the components will add up to a

whole greater than the sum of its parts.

deriving components:
figuring out what you’ll
need to design

PART 2

Deriving Components: Figuring Out What You’ll Need to Design24–25

THE PREVIOUS CHAPTER DISCUSSED a component-based

approach to creating design mockups. Understanding the visual

design approach is important for setting a baseline for our

discussion, but in practice, the first step in the process — before

you begin any visual design — is to understand the content and

the interactions that your design will need to represent.

As discussed in the previous chapter, the design of the

components themselves must be tied directly to an

understanding of purpose — i.e., what any given component

is supposed to do — and design decisions must be measured

against how effectively they serve that purpose.

This chapter discusses the process of actually defining

your requirements as a first step toward establishing your

component library. The steps outlined in this chapter are often

undertaken by a user experience strategist or information

architect working in collaboration with a visual designer.

Yesterday’s Design Process

Hopefully the following description sounds unfamiliar to you, or

at least like ancient history:

After some brief conversations, a designer would sketch

some possible visual design options — often up to three — and

present them to the client or stakeholders. The client would

respond to the aesthetic of each design, often mixing and

matching elements from each, ultimately arriving at a hybrid

design that they were satisfied with. Then, only after choosing

the visual approach, would the design and/or development

teams begin trying to fit the content and functional

requirements into a design the client had already approved.

Frustrations mounted between and among design, developer,

and client, and constant deficits were found and rework was

required to make the design actually fit the needs of the content

or functionality.

Design Systems for the Web

The preceding paragraph describes what the steps in a web

design process look like when performed in the wrong order,

but this was an extremely common approach before content-

first and user-first thinking began to take hold. Hopefully

everyone reading this has moved away from the design process

I just described, but even if you have, it’s important to outline

and understand why it was such a poor approach:

Form before function — It’s tempting to start sketching and

designing without having built a deep understanding of the

functional and content requirements. You might be excited

about ideas you have, the visual brand, or imagery, but you

need to start at the right place or you’ll end up with a “great”

design that doesn’t actually work. It will probably end up

ruining your design, as you’re forced to make concessions

later in the project. Remember: Wireframes aren’t just useful

sketches to help you brainstorm. They are a way to separate

the visual concerns from the architecture and content priority

of the site, allowing you to focus on the fundamental needs of

what you’re designing, before you begin adding the visual layer.

Making clients happy in the short term and unhappy in the

long term — If you’re a good designer, it should be fairly easy

for you to design something the client likes from an aesthetic

standpoint. Some clients are going to be savvy and detail-

oriented enough to poke functional holes in the design, but

most will trust that you’ve considered the needs of the website

and give you a thumbs-up without recognizing all of the hidden

deficits in what you’ve presented.

Presenting multiple design options — Almost never a good

idea. You should take your pre-design IA and UX work very

seriously, especially if you’re performing research, user testing,

analytics review, a content audit, and other qualitative and

quantitative steps to establish the needs and success metrics

for your project. If you present multiple design options just for

the sake of presenting three different options, what does that

say about your confidence in your requirements gathering?

1

2

3

Deriving Components: Figuring Out What You’ll Need to Design26–27

Do all three options actually reflect equally successful ways

of solving the design challenges you identified? You should

identify the best, most effective solution to each requirement

and craft them all into a system. Iterate internally, but present

only your best work.

A Better Way: Designing From Purpose, Needs, and Priority

While a detailed overview of the content/UX discovery process

is outside the scope of this guide, the requirements gathering

process must leave the visual designer with an understanding

of three key points with respect to each component: purpose,

needs, and priority. In this section, we’ll help you understand

how to define and provide these aspects of each component.

If you’re familiar with agile software development, there

are many similarities between this process and the agile

development process: The design requirements are broken into

manageable, isolated pieces, articulated at a high level, then

tied to a series of more specific requirements.

Establishing Purpose

Before you begin sketching your first wireframe, review

and isolate the requirements that have emerged from your

discovery process. Do you need to show a teaser for an event?

A call to action button? A hero banner? A search interface? For

each requirement, ask yourself “what am I trying to accomplish,

and what do I need to put on the screen in order to accomplish

it?” Put another way: “What problem — from a user’s

perspective — will this solve?” Continuing to ask yourself these

questions will help you keep the purpose of your component

at top of mind. You need to be able to justify why it exists in

the first place; otherwise, it’s just cluttering up your system.

Remember: Nothing goes on the screen without a reason.

Nothing goes on the screen if you can’t explain its complete,

end-to-end interaction.

Design Systems for the Web

As an example, consider the Google.com search interface.

This may be the most well-known, purpose-driven interface on

the planet.

The purpose of this component is extremely straightforward:

As a user, I can type a series of search keywords and be taken to

a list of relevant results. (If you’re familiar with Agile terminology,

the purpose of a component is quite similar to a “user story” for

a given feature. Without including much detail, it explains the

component’s most fundamental reason for existing.)

Note how the purpose, as outlined above, doesn’t actually inform

visual design. There are many different ways the purpose above

could be realized, and that’s part of the point. As we’ll discuss

later, one of the benefits of a design system is that the design

itself can evolve without changing the underlying functionality.

If you’re unable to clearly and definitively state the purpose

of something you’re about to add to your design, you should

stop to question yourself. Is the purpose unclear, and you need

to confirm the requirements you’re designing to? Or are you

adding elements to the page that don’t actually bring value?

Remember what Antoine de Saint-Exupéry, author of The

Little Prince, said of design: “A designer knows he has achieved

perfection not when there is nothing left to add, but when

there is nothing left to take away.”

The preceding paragraph ended with “nothing goes on the screen if you can’t explain

its complete, end-to-end interaction.” It’s worth highlighting this point and providing an

example of what not to do. Remember that design can inherently suggest functionality,

and that fact can be dangerous if you haven’t established what the functionality actually

is. For example, consider a basic search interface, but with a tiny “insignificant” link

in the design that says “advanced search,” indicating that the user can click to reveal

additional options. Depending on the requirements, an “advanced search” option could

add days or even weeks of effort to a project. If you’ve added something to the design

for which the end-to-end functionality (which fields it searches, how it displays result

counts, etc.) is not entirely vetted, leave it out of your mockups.

Deriving Components: Figuring Out What You’ll Need to Design28–29

Establishing Needs

Defining the specific needs of your component is where

you begin to establish its functional requirements, and it’s

also where you begin to indirectly inform design: You are

establishing certain criteria and constraints that the designed

component must adhere to in order to maintain its purpose.

(If you’re still thinking in terms of Agile, this would be your

“acceptance criteria.”)

Following the Google example above, the “needs” overview

would look something like this:

 – Single-line text area that can support a word or long phrase

 – A search button to submit the search form

 – An “I’m feeling lucky” button to automatically take a user to

a result for their search

Let’s actually talk about that last “need,” since it may have

occurred to you that it is debatable. Do we really need an “I’m

feeling lucky” button to suit the needs of this component?

Personally, I would argue that “I’m feeling lucky” is superfluous

from a UX perspective, and I wouldn’t include it in my list

of needs. However, needs can come from many places. “I’m

feeling lucky” is essentially part of Google’s brand at this point,

or maybe someone in a very high position really likes the

nostalgia factor. Needs can come from many places, which is

why it’s important to extract them before you begin — and then

have to rework — your design.

The search button as a need for this component is also worth

talking about. It seems obvious that a search button to submit

your keywords would be a requirement, but you may recall

that “instant search” was a Google feature at one point; results

would begin appearing while you were still typing. That feature

eliminated the need to actually click the search button, which

changed the needs of the component. Later, the feature was

removed2 because so many searches were happening on

searchengineland.com/google-dropped-google-instant-search-2796742

Design Systems for the Web

mobile, which had “very different input and interaction and

screen constraints.”

The main takeaway from the discussion about the search button

is that needs can evolve, change, and change back. This is

one of the reasons why it’s so critical to isolate purpose,

needs, and priority, and to think in terms of components when

approaching your design.

Defining Priority

The final piece of this component puzzle is priority. Priority has

to do with the visual importance given to different components

within a layout. Following with our Google search example,

the priority of that component may be expressed as “Before

the user searches, the search component must be the most

prominent thing on their screen. After searching, the results

themselves are most prominent, but the search component

must remain a close second in priority, and must be the most

obvious point of interaction outside of the results themselves”.

Notice how we’re continuing to establish constraints around the

design, which, again, should be taken as a good thing. In fact, you

should try to think of these priority definitions not as limitations,

but rather as benchmarks that will confirm the success of your

design solution. Problem-solving is what separates graphic

design from fine art, and when designing websites, you should

definitely be problem-solving at every stage. Establishing

purpose, needs, and priority will give you a clear understanding

of which problem you’re actually trying to solve.

Purpose and Needs: A Real-World Example

Consider, as an example, the typical “homepage hero” that

many designers have come to accept as the anchor tenant of

the homepage. You’re familiar with this component: A majority

of the screen is taken up with a series of large, rotating photos

that are (ostensibly) used to drive users to important, timely

content on the site.

Deriving Components: Figuring Out What You’ll Need to Design30–31

There’s just one problem: If you’re trying to drive users to

important and timely content on the site, a rotating image

carousel is a measurably poor way of accomplishing that goal.

Users rarely wait for the images to scroll by, and almost never

interact with the images that appear later in the carousel. This

overused page component is misguided because the purpose,

needs, and priority were never established.

Generally speaking, we’ve come to avoid designing rotating

hero carousels. There are certainly instances where there’s

value in having a large, establishing photo and short,

meaningful messaging. In those instances, we recommend a

single photo (non-rotating) and a single statement, usually tied

to one or more calls to action. But where possible, we try to

deconstruct this trope altogether.

For example, in designing the website for Penn State’s Student

Affairs Division, it became clear from research and user testing

that the website was used as a critical, go-to information

repository. Visitors wanted to immediately drill down to

specific information, and only rarely were visits introductory or

exploratory.

So we thought about the purpose, needs, and priority of the

homepage hero area:

The purpose of the hero area is to offer visitors a first step

toward the information they are looking for. It needs to feature

clear, distinct links to primary topics and a way to search. Its

priority is that it should be the most prominent component on

the homepage at every screen size.

The site still features a large, tone-setting image in the main

hero area, but it is connected to six primary topic buttons that

drive users deeper into the site. There was simply no justifiable

reason to use this screen real estate for a scrolling banner

image because it wouldn’t have satisfied the purpose, needs,

and priority we were actually designing to.

Design Systems for the Web

Dealing With Single-Use Page Elements

There are times when you will be faced with the following

reality: There’s a need for a component that will only ever exist

once throughout your site or application. Because it’s not going

to repeat elsewhere, it’s a true outlier. For example, maybe it’s

a homepage feature or a map interface that has no compelling

reason to exist outside of a particular context.

This situation is sometimes completely valid, and you should

go ahead and design a single-use “page element” (which is

the terminology we’ve adopted for these one-offs). Before you

resign yourself to a single-use page element, though, make

sure that it is truly single use. Is there really no other practical

reason it would be used elsewhere? Would a few minor tweaks

allow it to merge with another page element and therefore

become a reusable component?

Remember, we’re thinking in terms of reasons, not rules. There

are real-world scenarios for single-use page elements — just

make sure you’re actually in one of those scenarios before

you design a “one-off.” Also, you should try to build the page

element using other components you’ve already designed.

If it needs a button, don’t design a new kind of button if your

system already has one. The single-use page element itself

should be built from smaller components in your system,

insofar as that’s possible.

Crafting Layouts From Your Components

While purpose and needs should be defined in isolation on a

component-by-component basis, there comes a point where

you need to begin thinking about how those components will

actually work together in a layout.

The point in your process when you start applying components

to layouts is based on individual preferences and experience.

I know designers who prefer to start putting together layouts

very early in the process, even while still finalizing their

components. This is a reasonable approach as long as they are

Deriving Components: Figuring Out What You’ll Need to Design32–33

always looking at the design as a system of building blocks, and

as long as the design is still in an early, iterative phase.

If you are tackling your first component-based design, you

may want to wait until later in the process to begin crafting

layouts. You may be inclined to start with layouts because it’s

comfortable, but you should first create a detailed component

guide as an authoritative point of reference. Once you’re able to

see and think in components, you can work on layouts earlier in

the process, iterating over your component design as the layouts

come together. The same way a composer can isolate the

violins, flutes, and other instruments while listening to a piece

of music, the designer should see their design as a series of

smaller, purpose-driven pieces, not as a single, indivisible mesh.

Design Systems for the Web

the end goals of your
system + scaling into
the future

PART 3

The End Goals of Your System + Scaling Into the Future36–37

THERE’S QUITE A BIT OF UP-FRONT WORK INVOLVED in

crafting a design system, but your total outlay of effort over the

course of a project should be dramatically reduced if you are

thoughtful in your decisions and diligent in your documentation.

Ultimately, there are four primary end goals of a component-

based system:

Adaptability

As the needs of your site or application evolve, your system

should prove to be adaptable to changing requirements. You

should find it easy to add new components to the system or to

enhance existing ones without the need to deconstruct your

design approach from the ground up. Design components

should be “hot swappable” in this way: Individual components

can be changed without any major shakeup of the overall

design. This flexibility allows you and your product owners to

evolve the design over time because your system is tolerant to

changing requirements. It should be entirely possible to iterate

over the design system for a long time, making incremental

changes to keep up with updated brand guidelines, new

requirements, and other changes that will stress test the

objectivity of your approach.

We have a number of enterprise-level clients for whom

fast, organizational changes are not always practical. It can

be difficult for these types of organizations to keep up with

changing technology and customer expectations, and many

have felt the pain of being in a constant state of re-designing

their website, seemingly with no end in sight. Putting these

kinds of clients on a component-based system — something

thoughtfully and thoroughly architected with concern for

scalability — has allowed them to focus on actually exercising

their website as a tool, rather than being forever in “tinkering”

mode. We have at least one client who is currently working

on the third iteration of their “same” website, though it bears

no resemblance to the original. It has been redesigned in

manageable pieces, as necessary, to the point where there’s

Design Systems for the Web

nothing left of the original front end. But there was never a need

for a massive re-design process after the initial rollout, because

the system was self-governing. The normal problems that creep

into a site were kept to a manageable point, so a complete tear-

down hasn’t been necessary.

Controlled Flexibility/Maintenance of Design Integrity

In the case of websites built on a content management system

(CMS), your component system will be used by editors who

are likely not well-versed in design. Your goal here is to provide

content editors flexibility without giving them the ability to

degrade the integrity of the design. The editors should have

some control over the order of elements on a page, but they

shouldn’t be able to make fundamental changes to color,

typography, or sizing. The days of providing editors a fully

manageable WYSIWYG (what-you-see-is-what-you-get)

editor should be considered over at this point. Using a full-

featured WYSIWYG editor for content management not only

allows editors to apply styles that may be incompatible with

the design system, but it goes against principles of semantic,

portable content.

Rather than providing a large WYSIWYG field for editors to use,

the content management system should allow them to apply

various components to a page, filling in the fields for heading,

text, image, etc., but without requiring them to do any actual

“designing.” Basic styles such as bold, italic, underline, and

links can be maintained, but giving full control over the HTML

would prove fatal to the long-term viability of the content.

You need the CMS to hold clean, semantic data with as little

markup as possible, so that the content remains completely

separate from the presentation. Remember: The presentation

layer (i.e., your front-end design) is likely to change, whether

through component redesign or a CMS migration. If the content

structure and styling are intertwined (as is the case with

arbitrarily-styled HTML blobs), you can’t strategically alter the

front end without also editing the content itself.

The End Goals of Your System + Scaling Into the Future38–39

When you’re implementing a component system for a

CMS-based website, a new kind of education is required for

content managers. They need to understand the reasons to

use one component over another (e.g., where should I use an

accordion vs. a tab panel?), and be given some guidance on

how components should be used (e.g., don’t use three large

callout blocks in a row if they weren’t designed for that). Your

content, UX, and design teams should be prepared to offer

this additional level of training when unveiling the content

management system.

Usability

Ultimately, designing for the web is about providing an

experience to the users who actually use the website or app.

Thinking about your design as a system — as an architecture for

your user experience — infuses the whole process with a user-

first approach that will be reflected in the end product.

If you’ve done the up-front work to create true consistency in

your design, to think through the purpose of each component

and establish reasons for your design choices, and to ensure

that you’re not adding confusing or unnecessary elements to

the screen, your users will be immediately better off. You will

have intrinsically eliminated as much confusion as possible

from your interface, leaving only what’s necessary for the

experience you wish to create.

A Note About Affordance

In my view, one of the most important aspects of interface

design is what’s known as “perceived affordance.” Coined

by Don Norman in his book Psychology of Everyday Things,

“affordance” refers to the actions that a user perceives to be

possible when looking at an object. Applied to UX design, it

can be thought of in terms of “does this thing look like it will

actually do what I, as the user, expect it to do?” For example,

underlined text in a web browser suggests that the text will be

clickable as a link.

Design Systems for the Web

In the Flash days, the most egregious example of NOT using established browser UI
could be found in applications that designed and implemented their own scrollbars,
often circumventing browser scrolling altogether. You should have extremely good
reasons if you’re going to uproot the expected UI in this manner.

*

In a systems approach to design, the affordance of each

component and element in your system should be clear to the

user. Something that looks clickable should be clickable, and

something that looks scrollable should be scrollable, always.

You should use established principles of browser or device

UI where available*, but it’s not always a mortal sin to require

users to “learn” something about your interface as long as

their gained knowledge is applicable across the entire site or

application. An example of what not to do: If you “teach” the

user that a right-facing arrow means a link to a new page or

section, don’t later use a right-facing arrow as a way to expand

an accordion component.

Scalable Implementation

Your design system will ultimately be translated into CSS,

HTML, and the requisite back-end and behavioral code to make

the whole thing come to life. Developers are forced to build

their systems within constraints, ranging from unfortunate

limitations of a particular platform to the fact that programming

is fundamentally based on strict rules and syntax.

One of the most common reasons that the front-end

implementation of a website or app begins to become

burdensome is that the programmer is forced to work within

constraints that the designer wasn’t mindful of. As a result, the

total amount of code — and its complexity — increases as the

programmer accounts for inconsistencies in the design, or the

constant appearance of “one-offs,” where special code has to be

written to deal with a use case that only appears in one place.

The real-world implications of a poor or nonexistent design

system most often shake out as seemingly infinite and

ongoing problems with the implementation. Brittleness (“I

fixed one thing and something else broke”) is widespread, as

The End Goals of Your System + Scaling Into the Future40–41

are regression issues (“this thing was right before, but now

it’s not”). Perhaps the scariest problem is “this is fixed on

one page but not on another,” which indicates that the code

has been implemented on a very granular basis, preventing

global changes and fixes. This means there’s been a complete

breakdown of the systems-based approach, and you should

prepare for a real grind in quality assurance.

As a developer works on a site with no underlying system,

they’re forced to write more and more single-purpose code, and

the logic begins to branch in many directions. That’s why you end

up with the kinds of problems outlined in the previous paragraph.

Beginning the project with a thoughtful, systems-based approach

and using consistent nomenclature can prevent nearly all of

these problems.

Design Systems for the Web

The End Goals of Your System + Scaling Into the Future42–43

1 Establish the purpose of each component in its most

fundamental form.

2 Identify specific needs for the component that are necessary for

it to suit that purpose.

3 Design your components around their function, not their

context — define it by what it does for the user (e.g., a callout block

that directs users to another page) rather than where it happens to

be utilized (e.g., “this is the featured story callout block”).

4 Think globally about how the decisions you make in design will

apply across the website or application, rather than designing

to an individual use case.

5 Never put anything on the screen unless you can explain its

purpose and detail what happens when a user interacts with it.

6 Build layouts exclusively from components in your system;

never change an individual layout to incorporate something

outside of the existing system. Instead, update or enhance your

component library to accommodate this new use case.

in short...

Design Systems for the Web

1 Long-term viability and adaptability of the system, which does

not have to be re-thought as requirements change.

2 Flexibility for content managers without compromising the

integrity of the design.

3 Improved user experience through consistency and clear

affordance.

4 Improved experience in implementation: faster development

with fewer ongoing quality assurance issues.

your design approach
should provide for

Above: The entryway to our Center City Philadelphia office

our company

EASTERN STANDARD is a branding and web agency created

by merging a branding studio and web applications developer

in order to meet our clients’ demand for a truly integrated

creative and digital agency. We are more than a group of

strategists, designers, and developers. We understand the

keys to good branding. We offer real-world experience in

meeting business objectives, and we know how to leverage and

present your branded content in a manner that accomplishes

those objectives. We have the technical expertise to face

complicated challenges or advanced functional requirements

head on. Together with your team, we develop award-winning

experiences through winning strategies, smart design, and

modern products.

Eastern Standard — The Meaning Behind the Name

Our company name, Eastern Standard, is a reference not only to

our East Coast roots, but also a nod to the Eastern philosophies

of simplicity, harmony, and balance. It conveys a sense of

longevity and the commitment to creativity and innovation

we’re known for by our clients and peers.

Find out more at easternstandard.com

Jim Keller

Founding Partner & Technology Director at Eastern Standard

JIM KELLER IS ONE OF THE founding partners of Eastern

Standard, a combined branding and web agency headquartered

in Philadelphia. He has worked in nearly all aspects of web

technology over his 20-year career, from extensive front-end

coding to network operations support at Philadelphia’s first

Internet provider.

Jim’s experience in UX, research, and design, and his focus on

technology implementation guides our team in the creation of

innovative, large-scale web projects.

about the author

notes

Eastern Standard
1218 Chestnut St., 4th Floor
Philadelphia, PA 19107
easternstandard.com

